
Polymorphic Typing of Variables and References

GEOFFREY SMITH

Florida International University

and

DENNIS VOLPANO

Naval Postgraduate School

In this article we consider the polymorphic type checking of an imperative language� Our lan�
guage contains variables� �rst�class references �pointers�� and �rst�class functions� Variables� as
in traditional imperative languages� are implicitly dereferenced� and their addresses �L�values� are
not �rst�class values� Variables are easier to type check than references and� in many cases� lead
to more general polymorphic types� We present a polymorphic type system for our language and
prove that it is sound� Programs that use variables sometimes require weak types� as in Tofte�s
type system for Standard ML� but such weak types arise far less frequently with variables than
with references�

Categories and Subject Descriptors	 D�
�
 �Programming Languages�	 Language Constructs
and Features
 F�
�
 �Logics and Meanings of Programs�	 Studies of Program Constructs�
type structure

General Terms	 Languages� Theory� Veri�cation

Additional Key Words and Phrases	 Assignment� references� variables

�� INTRODUCTION

Polymorphic type checking of a language with �rst�class references �pointers� is a
di�cult problem� as can be seen by the many type systems proposed for typing ref�
erences in Standard ML �Damas 	
��
 Greiner 	

�
 Hoang et al� 	

�
 Leroy 	

�

Leroy and Weis 	

	
 Talpin and Jouvelot 	

�
 Tofte 	

�
 Wright 	

��� But
many imperative programs do not require the power of �rst�class references�they
merely manipulate values� other than pointers� as the contents of local variables�
Unfortunately� if local variables must be created using �rst�class references� then
whatever mechanism is used to enforce the correct typing of references is likely to

This material is based upon activities supported by the National Science Foundation under Agree�
ments No� CCR�������� and CCR��������� Any opinions� �ndings� and conclusions or recom�
mendations expressed in this publication are those of the authors and do not necessarily re�ect
the views of the National Science Foundation�
Authors� addresses	 G� Smith� School of Computer Science� Florida International University� Mi�
ami� FL

���
 email	 smithg�cs��u�edu
 D� Volpano� Department of Computer Science� Naval
Postgraduate School� Monterey� CA �
��

 email	 volpano�cs�nps�navy�mil�
Permission to make digital�hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for pro�t or commercial advantage� the
ACM copyright�server notice� the title of the publication� and its date appear� and notice is given
that copying is by permission of the Association for Computing Machinery� Inc� �ACM�� To copy
otherwise� to republish� to post on servers� or to redistribute to lists requires prior speci�c
permission and�or a fee�
c� ���� ACM ���������������������� ��
���

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages 	
��	�
�

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 MAY 1996

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Polymorphic Typing of Variables and References

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Florida International University

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Polymorphic Typing of Variables and References � ���

adversely a�ect the typing of programs that really only need variables� Thus� it is
bene�cial to introduce an additional letvar construct to allocate variables� which
are implicitly dereferenced and whose addresses �L�values� are not �rst�class values�

Aside from their typing bene�ts� variables are also of interest because their im�
plicit dereferencing is a syntactic convenience� and because they are at the core of
mainstream imperative languages�
The idea of including variables in a polymorphic language is not new� In fact�

Edinburgh LCF ML �Gordon et al� 	
�
� had a letvar construct� which it called
letref� But it did not have �rst�class references� and according to Tofte �	

��� its
type system was never proved sound�

�� AN INFORMAL DESCRIPTION OF THE TYPE SYSTEM

The language we consider is the core ML of Damas and Milner �	
��� together with
�rst�class references� created by ref� variables� created by letvar� and imperative
constructs such as while loops� The construct letvar x �� a in b binds x to a
new cell initialized to the value of a� The scope of the binding is b� and the lifetime
of the cell is unbounded� Conversion of L�values to R�values is implicit� so that
letvar x �� e in x is equivalent to e�
The types of our system are strati�ed into three levels� There are the ordinary

� �data types� and � �type schemes� type levels of Damas and Milner�s system
and a new level called phrase types containing � types and types of the form � var

for variables� Unlike references� variables are not �rst�class values� As in Tofte�s
system for Standard ML �Tofte 	

��� type variables are partitioned into weak and
strong variables�� Strong type variables are written � and weak ones �� A weak
type variable cannot be instantiated with a type containing strong type variables�
As in Tofte�s system� a weak type variable can be generalized only when it appears
in the type of a syntactic value� that is� an identi�er� a literal� or a ��abstraction�

Because variable addresses are not �rst�class values� it is easier to keep track
syntactically of operations on variables than operations on references� As a result�
many useful functions that use letvar can be given fully polymorphic types� For
example� imperative list reversal can be de�ned as

fun irev l � letvar a �� l in

letvar b �� �� in

while not �null a� do

� b �� �hd a� �� b�

a �� tl a��

b

end end

Two local variables a and b are declared� yet the function is assigned fully poly�
morphic type �� � � list � � list in our system� Thus irev�� is a polymorphic list
of type �� � � list� Consider a de�nition of irev in Standard ML�

fun irev l � let val a � ref l in

let val b � ref �� in

�Tofte actually calls them imperative and applicative variables� respectively�

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

��� � Geo�rey Smith and Dennis Volpano

while not �null �	a�� do

� b �� �hd �	a�� �� �	b��

a �� tl �	a���

	b

end end

Now the use of local variables is re�ected in the type of irev� Standard ML would
give it type � � � � list � � list� where � is an imperative type variable� and
Standard ML of New Jersey would give it type ��� � �� list � �� list where �� is
a weak type variable� The weak variable indicates that applying irev once may
create a reference whose type involves �� In each case� consequently� irev�� is not
a polymorphic list�
One has the option of de�ning irev in our language using ref instead of letvar�

but this would needlessly constrain polymorphism� Our system would then give it
the Standard ML type � � � � list � � list� and the application irev�� would no
longer be polymorphic� In fact� if one always uses let and ref in our system rather
than letvar� then our system �degenerates� to Tofte�s system for Standard ML�
Our system also does well on programs that cause problems for the �syntactic

values� type system advocated by Wright �	

��� Consider makeCountFun which
takes a function f as input and returns both a counting version of f and a function
to read the counter�

fun makeCountFun f � letvar x ��
 in

� fn z �� x �� x �
� f z�

fn �� �� x�

end

Our system gives makeCountFun type

��� � � ��� �� � ��� �� � �unit � int��

and an application such as makeCountFun hd is polymorphic� If makeCountFun is
written using let and ref� then makeCountFun hd is also polymorphic in Tofte�s
system� But in Wright�s system� makeCountFun hd is monomorphic because only
syntactic values are polymorphic� and a function application is not a syntactic value�

Programs that use letvar but not ref may still require weak types� The rule
is that a letvar�bound identi�er must be given a weak type if it occurs in a ��
abstraction within its scope� This rule comes into play when functions create �ob�
jects� or �own variables�� For example� consider a function that creates a stack
object with push and pop operations accessing a shared stack�

fun makestack x �

letvar stk �� x in

� fn v �� stk �� v �� stk�

fn �� �� stk �� tl stk�

end

It is unsound to give makestack the strong polymorphic type

�� � � list � ��� unit� � �unit � unit�

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

Polymorphic Typing of Variables and References � ���

because� if the application makestack �� were polymorphic� the resulting push op�
eration could be called with values of di�erent types� leading to a nonhomogeneous
stack� In our system� since stk occurs inside a ��abstraction within its scope� it
must be given a weak type� This allows makestack to be given only the weak
polymorphic type

� � � � list � � �� unit�� �unit � unit ��

The ability to give makestack a weak polymorphic type makes our system sub�
stantially better than Edinburgh LCF ML on cases of this kind� In LCF ML� a
letvar�bound identi�er must be given a monotype �i�e�� a type with no variables�
if it is assigned to within a ��abstraction within its scope �restriction �ib �Gor�
don et al� 	
�
� p� �
��� Hence� since stk is assigned to within the push and pop
operations� LCF ML requires stk to be annotated with a monotype� This forces
makestack to be monomorphic�
Finally� typings of purely functional programs in our system are preserved as

they are in the type systems for Standard ML and Standard ML of New Jersey�
No labels or other annotations are required on arrow types as they are in closure
�Leroy and Weis 	

	� and e�ect �Talpin and Jouvelot 	

�
 Wright 	

�� typing�

�� A FORMAL TREATMENT OF THE TYPE SYSTEM

The syntax of our language is given below� Following Tofte �	

��� we distinguish
a subset of the expressions called Values� Evaluating a value does not allocate any
new cells
 this property is exploited by the type system�

�Expressions� e ��� v j l j e� e� j let x � e� in e� j
letvar x �� e� in e� j e� �� e� j
ref e j �e j
e�
 e� j while e� do e� j if e� then e� else e�

�Values� v ��� x j c j r j �x� e

Metavariable x ranges over identi�ers� and metavariable c ranges over literals�
such as true� false� and unit� Metavariables l and r range over variable locations

and reference locations� respectively�� Notice that unlike reference locations� vari�
able locations are not values� The � operator is used to dereference a reference
 it
is similar to � in Standard ML� Finally� we remark that the sequential composition
e�
 e� could be taken as syntactic sugar for let z � e� in e�� where z is new�
The types of the language are strati�ed as follows�

� ��� � j bool j unit j � ref j � � � � �data types�
� ��� �� � � j � �type schemes�
	 ��� � j � var �phrase types�

Metavariable � ranges over type variables� Type variables are partitioned into weak

and strong type variables� written � and � respectively� These variables correspond
to the imperative and applicative type variables respectively of Tofte�s system� We

	Locations will not in fact occur in user programs� They are included as expressions solely for the
purpose of simplifying the semantics� as will become clear in Section ��

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

��� � Geo�rey Smith and Dennis Volpano

say a data type � is weak i� every type variable occurring in it is weak� Type � ref

�� var� is the type of reference �variable� locations storing values of type � �
The rules of the type system are formulated as they are in Harper�s system

�Harper 	

�� and are given in Figure 	� It is a deductive proof system used to
assign types to expressions� Typing judgments have the form

�

 � e � 	

meaning that expression e has type 	 assuming that the free identi�ers and locations
of e have the types prescribed by
 and �� respectively� More precisely� metavariable

 ranges over identi�er typings� which are �nite functions mapping identi�ers to
phrase types

�x� is the phrase type assigned to x by
� and
�x � 	� is a modi�ed
identi�er typing that assigns phrase type 	 to x and assigns phrase type
�x�� to
any identi�er x� other than x� Metavariable � ranges over location typings� which
are �nite functions mapping locations to data types� The notational conventions
for location typings are similar to those for identi�er typings�

The generalization of a data type � relative to � and
� written Close�
��� �� is the
type scheme ��� � � � where �� is the set of all type variables occurring free in � but
not in � or in
� We write � � e � � and Close��� � when
 � �� A restricted form
of generalization� written AppClose�
� �� �� is de�ned to be the same as Close�
��� �
except that only strong type variables are generalized
 any weak ones remain free�

A substitution is a mapping S from type variables to data types such that if �
is in the domain of S� then S� �� is weak� Substitutions extend homomorphically
to data types�
We say that � � is a generic instance of ��� � � � written ��� � � � � �� if there exists

a substitution S with domain �� such that S � � � �� We extend this de�nition to
type schemes by saying that � � �� if for all � � �� � � implies � � � �
Finally� we write �

 � e � � i� �

 � e � � whenever � � � �
Rules �L�VAL� and �ASSIGN� should be contrasted with the analogous rules in

Standard ML� In our system� if e � � ref � then �e � � var
 in Standard ML� �e � � �
In our system� the left�hand side of an assignment must have a type of the form
� var
 in Standard ML� it must have a type of the form � ref � Hence if x � int ref �
then one increments the cell that x points to by writing

�x �� �x� 	

in our system and

x �� �x� 	

in Standard ML�
We do not adopt Standard ML�s typings of references because this would lead

to ambiguity� For suppose that we had two rules for typing assignments� rule
�ASSIGN� and Standard ML�s rule�

�

 � e� � � ref � �

 � e� � �
�

 � e� �� e� � unit

�

Then the expression

letvar p �� ref � in �x� p �� x

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

Polymorphic Typing of Variables and References � ���

�IDENT� ��� � x � � ��x� � �

�VAR�ID� ��� � x � � var ��x� � � var

�REFLOC� ��� � r � � ref ��r� � �

�VARLOC� ��� � l � � var ��l� � �

�LIT� ��� � true � bool

��� � false � bool

��� � unit � unit

���INTRO� ����x � ��� � e � �	
��� � �x� e � �� � �	

���ELIM� ��� � e� � �� � �	� ��� � e	 � ��
��� � e� e	 � �	

�LET�VAL� ��� � v � ��� ����x � Close�������� � e � �	
��� � let x � v in e � �	

�LET�ORD� ��� � e� � ��� ����x � AppClose�������� � e	 � �	
��� � let x � e� in e	 � �	

�LETVAR� ��� � e� � ��� ����x � �� var� � e	 � �	
If x occurs in a ��abstraction in e		 then �� is weak

��� � letvar x �� e� in e	 � �	

�R�VAL� ��� � e � � var

��� � e � �

�ASSIGN� ��� � e� � � var � ��� � e	 � �
��� � e� �� e	 � unit

�REF� ��� � e � �� � is weak
��� � ref e � � ref

�L�VAL� ��� � e � � ref

��� � �e � � var

�COMPOSE� ��� � e� � ��� ��� � e	 � �	
��� � e�� e	 � �	

�WHILE� ��� � e� � bool� �� � � e	 � �

��� � while e� do e	 � unit

�IF� ��� � e� � bool� �� � � e	 � �� �� � � e� � �

��� � if e� then e	 else e� � �

Fig� �� Rules of the type system�

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

��	 � Geo�rey Smith and Dennis Volpano

in which p has type int ref var would be ambiguous� If x had type int ref � then
the assignment would make p point to a new cell� On the other hand� if x had type
int � then an R�value conversion of p could give it type int ref � and the assignment
would change the contents of the cell to which p points� But with our rules there
is no ambiguity� Just as in C� we write p �� x to make p point to a new cell and
�p �� x to change the contents of the cell to which p points�

Note also how the type strati�cation and typing rules force variables to be implic�
itly dereferenced� except when they occur as the left�hand side of an assignment�
Consider� for example� the typing of letvar x �� e� in e�� Rule �LETVAR� forces
e� to be given a data type ��� not a phrase type� So if e� is x �with type� say� �� var ��
then we are forced to use rule �R�VAL� to derive the typing x � �� before we can
type the entire letvar� Indeed� one can readily see that the only expressions that
can get types of the form � var are identi�ers� variable locations� and expressions
of the form �e�

�� SEMANTICS AND SOUNDNESS

In this section� we establish the soundness of our type system using the framework of
Harper �	

��� who built upon the earlier work of Tofte �	

��� Wright and Felleisen
�	

��� and Leroy and Weis �	

	��

First we give a structured operational semantics for our language� An expression
is evaluated relative to a memory �� which is a �nite function from locations to
values� The contents of a location l � dom��� is the value ��l�� and we write
��l �� v� for the memory that assigns value v to location l� and value ��l�� to a
location l� 	� l� Note that ��l �� v� is an update of � if l � dom��� and an extension

of � if l 	� dom����

Our evaluation rules are given in Figure �� They allow us to derive judgments of
the form

� � e
 v� ��

which is intended to assert that evaluating closed expression e in memory � results
in value v and new memory ��� We write �e��x�e to denote the capture�avoiding
substitution of e� for all free occurrences of x in e� The use of substitutions in rules
�APPLY�� �BIND�� and �BINDVAR� allows us to avoid environments and closures
in the semantics� so that the result of evaluating an expression is just another
expression�

We now turn to soundness� The basic idea is to show that if � e � � and � e

v� ��� then � v � � � a property called subject reduction� But since e can allocate
locations and since these locations can occur in v� the conclusion must actually be
that there exists a location typing �� such that �� � v � � and such that �� � ��� The
latter condition asserts that �� is consistent with ��
 more precisely� we say that
� � � if dom��� � dom��� and for every l � dom���� � � ��l� � ��l��

It is the location typing �� that makes soundness delicate� As observed by Tofte�
we may generalize a type variable � in typing � e � � � only to �nd that � occurs
�free� in ��� and therefore cannot be generalized in typing �� � v � � �

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

Polymorphic Typing of Variables and References � ��

�VAL� � � v� v� �

�APPLY� � � e� � �x� e�
�� ��

�� � e	 � v	� �	
�	 � �v	�x�e�

� � v� ��

� � e� e	 � v� ��

�BIND� � � e� � v�� ��
�� � �v��x�e	 � v	� �	
� � let x � e� in e	 � v	� �	

�BINDVAR� � � e� � v�� ��
l �� dom����
���l �� v�� � �l�x�e	 � v	� �	
� � letvar x �� e� in e	 � v	� �	

�CONTENTS� � � l� ��l�� �

�UPDATE� � � e� v� ��

� � l �� e� unit� ���l �� v�

� � e� � r� ��
�� � e	 � v� �	
� � �e� �� e	 � unit� �	�r �� v�

�ALLOC� � � e� v� ��

r �� dom����

� � ref e� r� ���r �� v�

�DEREF� � � e� r� ��

� � �e� ���r�� ��

�SEQ� � � e� � v�� ��
�� � e	 � v	� �	
� � e�� e	 � v	� �	

�LOOP� � � e� � false� ��

� � while e� do e	 � unit� ��

� � e� � true� ��
�� � e	 � v� �	
�	 � while e� do e	 � unit� ��

� � while e� do e	 � unit� ��

�BRANCH� � � e� � true� ��
�� � e	 � v� ��

� � if e� then e	 else e� � v� ��

� � e� � false� ��
�� � e� � v� ��

� � if e� then e	 else e� � v� ��

Fig� �� The evaluation rules�

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

��� � Geo�rey Smith and Dennis Volpano

The approach taken by Tofte �	

��� is to prevent the generalization of any type
variables that may occur in ��� In contrast� our system permits some type variables
that occur in �� to be generalized� For example� an expression such as

letvar x �� � � in x

allocates a location l of type � list
 nevertheless� we are allowed to generalize ��
The reason it is sound to do so is that the expression evaluates to � �� and �since
l does not occur in � �� we do not need the typing of l to derive a type for � �� In
general� our system keeps track of which variable locations may occur in values
and prevents the generalization of type variables that occur in the types of these
locations�
We now proceed with the formal development of the subject reduction theorem�

First we introduce some useful lemmas�

Lemma ��� �Superfluousness�� Suppose that �

 � e � � � If l 	� dom���� then
��l � � ��

 � e � � and if r 	� dom���� then ��r � � ��

 � e � � � Also� if x 	� dom�
��
then �

�x � 	� � e � � �

Lemma ��� �Substitution�� If �

 � v � � and �

�x � �� � e � � � then �

 �
�v�x�e � � � Also� if �

 � l � � var and �

�x � � var � � e � � �� then �

 � �l�x�e � � ��

Lemma ��� ���intro�� If �

 � e � � and � does not occur free in � or in
�
then �

 � e � �� � ��

The preceding three lemmas are straightforward variants of the lemmas given in
Harper �	

��� We also need another lemma�

Lemma ���� If ��l � � �

 � e � � � and l does not occur in e� then �

 � e � � ��

Finally� we say that l occurs in the range of � if l occurs in ��l�� for some l� or
in ��r� for some r� We can now give the subject reduction theorem�

Theorem ��	� Suppose that � � e
 v� ��� � � e � � � � � �� and � assigns weak
types to all reference locations in its domain and to all variable locations that occur
in the range of � or in a ��abstraction in e� Then there exists �� such that � � ���
�� � ��� �� � v � � � and �� assigns weak types to all reference locations in its domain
and to all variable locations that occur in the range of �� or in v�

Proof� The proof is by induction on the structure of the derivation of � � e

v� ��� For brevity� we present only the two most interesting cases� �BIND�� when
e� is not a value� and �BINDVAR��
In the �BIND� case� where e� is not a value� the evaluation must end with

� � e�
 v�� ��
�� � �v��x�e�
 v�� ��
� � let x � e� in e�
 v�� ��

�The same approach is taken by Wright �����
 ����� and SML�NJ �Greiner ���

 Hoang et al�
���
�� but not by Leroy and Weis �Leroy ����
 Leroy and Weis ������

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

Polymorphic Typing of Variables and References � ���

while the typing must end with

� � e� � ��
�
 �x � AppClose������ � e� � ��
� � let x � e� in e� � ��

�

Also� we have � � �� and � assigns weak types to all reference locations in its domain
and to all variable locations that occur in the range of � or in a ��abstraction in e�
or in e��
By induction� there exists �� such that � � ��� �� � ��� �� � v� � ��� and

�� assigns weak types to all reference locations in its domain and to all variable
locations that occur in the range of �� or in v��
Now to apply induction again we want to show that

�� � �v��x�e� � ���

By Lemma ��	 we have

��
 �x � AppClose������ � e� � ���

so we can apply Lemma ��� to get what we want provided that we can show

�� � v� � AppClose������

Now� applying Lemma ��� to �� � v� � �� we can get �� � v� � AppClose������� but
this is not good enough� because �� may contain free strong type variables that
are not free in �� To proceed� we exploit our knowledge about what locations can
occur in v��
Let ��� be formed by removing from �� any typings l � � such that � is not

weak� By the above use of induction� this process does not remove any typings of
locations that occur in v�� as all such locations have weak types� So by Lemma ����
��� � v� � ��� Hence� by Lemma ���� ��� � v� � AppClose������ since ��� contains no
strong type variables� Lemma ��	 then gives �� � v� � AppClose������ and �nally
by Lemma ��� we get �� � �v��x�e� � ���

By the use of induction above� �� assigns weak types to all reference locations in
its domain and to all variable locations that occur in the range of ��� Furthermore�
if a variable location l occurs in a ��abstraction in �v��x�e�� then either l occurs in
v�� or l occurs in a ��abstraction in e�� In the �rst case� ���l� is weak by the above
use of induction
 in the second case� ��l� is weak by the hypothesis� and so ���l� is
weak since � � ���
Hence we can use induction a second time to show that there exists �� such that

�� � ��� �� � ��� �� � v� � ��� and �� assigns weak types to all reference locations
in its domain and to all variable locations that occur in the range of �� or in v��
Since � � �� � ��� we are done�
As for the �BINDVAR� case� the evaluation must end with

� � e�
 v�� ��
l 	� dom����
���l �� v�� � �l�x�e�
 v�� ��
� � letvar x �� e� in e�
 v�� ��

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

��� � Geo�rey Smith and Dennis Volpano

while the typing must end with

� � e� � ��
�
 �x � �� var � � e� � ��
If x occurs in a ��abstraction in e� then �� is weak�
� � letvar x �� e� in e� � ��

�

Also� we have � � �� and � assigns weak types to all reference locations in its domain
and to all variable locations that occur in the range of � or in a ��abstraction in e�
or in e��
By induction� there exists �� such that � � ��� �� � ��� �� � v� � ��� and

�� assigns weak types to all reference locations in its domain and to all variable
locations that occur in the range of �� or in v��
Since l 	� dom����� �� � ���l � ����
Since ���l � ��� � l � �� var and �by Lemma ��	� ���l � ���
 �x � �� var � � e� � ��� we

can apply Lemma ��� to get

���l � ��� � �l�x�e� � ���

Also� ���l �� v�� � ���l � ��� by Lemma ��	�
Next� by the use of induction above� ���l � ��� assigns weak types to all reference

locations in its domain and to all variable locations that occur in the range of
���l �� v��� Now suppose that a variable location l� occurs in a ��abstraction in
�l�x�e�� Then either l� occurs in a ��abstraction in e�� or else l� � l and x occurs
in a ��abstraction in e�� In the �rst case� by the hypothesis ��l�� is weak� and so
���l � ����l

�� is weak� In the second case� by the restriction on the �LETVAR� rule�
�� is weak� and so ���l � ����l

�� is weak�
So by a second use of induction� there exists �� such that ���l � ��� � ��� �� � �

��
�� � v� � ��� and �� assigns weak types to all reference locations in its domain and
to all variable locations that occur in the range of �� or in v�� Since � � �� � ���l �
��� � ��� we are done�

Type soundness actually involves more than the subject reduction property� How�
ever� it is straightforward to extend the subject reduction theorem to show that
well�typed programs cannot su�er run�time type errors� This requires an easy
canonical forms lemma about the type system� that tells us that a closed value of
some type has the proper form� For example� a closed value of type � � � � must
be a ��abstraction� Harper �	

 � discusses this more fully�

�� DISCUSSION

One of our primary objectives has been to simplify the types of imperative programs
as much as possible� It is often argued that too much information in types makes
them unsuitable as speci�cations in module interfaces� This has also been a goal
of Wright�s system based on syntactic values� His system is a restriction of Tofte�s
system in that all type variables are considered imperative� regardless of whether
references are used�
 To restore polymorphism in practice� often
�expansion will
do� However� there are cases when
�expansion does not work� in particular� when

�Indeed� the technical report �Wright ���
� describing this system would be more accurately titled
�Polymorphism for Imperative Languages without Applicative Types��

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

Polymorphic Typing of Variables and References � ���

computing polymorphic procedures with imperative features� For example� in his
system� makeCountFun� expressed using let and ref� is e�ectively given type

� �� � � � �� �� � � �� �� � �unit � int��

Consequently� the application makeCountFun hd is not polymorphic� and restoring
it by
�expansion will not work� since each time the expansion is called a new
counter is created� Wright argues that in practice when polymorphic procedures
are computed� the computation is almost always functional� so polymorphism can
easily be restored by
 expansion� Even if
 expansion does work� there is also the
issue of call�by�name ine�ciency as there is in Leroy�s proposal for call�by�name
polymorphism �Leroy 	

��� Shared intermediate polymorphism through partial
application of curried functions is lost� In view of these de�ciencies� our system
with letvar is an attractive alternative� It is relatively simple and greatly reduces
the need for weak types�

Our system is not perfect� however� The restriction on rule �LETVAR� sometimes
forces variables to be given weak types unnecessarily� For example� consider the
following function that computes the Cartesian product of two lists�

fun icart xs ys � letvar a �� xs in

letvar b �� �� in

while not �null a� do

� b �� �map �fn y �� �hd a� y�� ys� � b�

a �� tl a��

b

end end

The mere occurrence of variable a in �fn y �� �hd a� y�� forces it to be given a
weak type� Hence the best type we can give icart is

� �� � � � list � � list � � �� �� list�

even though it should be fully polymorphic�
Similarly� the functional style of programming that codes loops using tail recur�

sion leads our system to assign weak types unnecessarily� This is why we have
included the while loop as a primitive in our language�

We conjecture	 that the restriction in the �LETVAR� rule can be relaxed to

If x is assigned to within a ��abstraction in e�� then �� is weak�

This is similar to Edinburgh LCF�s restriction �ib �Gordon et al� 	
�
� p� �
��
Proving soundness now requires a di�erent strategy than the one used here� because
now variable locations with strong types can occur in values� as in examples like
letvar x �� � � in �y� x�
Under the relaxed restriction� function icart can be fully polymorphic� because

variable a is not assigned to within �fn y �� �hd a� y��� However� even the re�
laxed restriction can force weak types to be introduced unnecessarily� For example�
a faster version of icart can be obtained by eliminating list concatenation�

This conjecture has now been established for a core language with variables but no references
�Volpano and Smith ������

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

��� � Geo�rey Smith and Dennis Volpano

fun fast icart xs ys � letvar a �� xs in

letvar b �� �� in

while not �null a� do

� map �fn y �� b �� �hd a� y� �� b� ys�

a �� tl a��

b

end end

The relaxed restriction forces both xs and ys to have weak type� although it is safe
for them to have strong type�

�� CONCLUSIONS

The type system presented here is appealing in its combination of expressiveness
and simplicity� It also clari�es the relationship between variables and references�
For example� C has the conversion operator ! for taking the address of a variable
or array element� We can introduce ! by including the typing rule

�

 � e � � var

� is weak
�

 � ! e � � ref

which is nicely symmetric to rule �L�VAL� �Volpano and Smith 	

 �� Finally� this
work has provided a basis for polymorphic typing in the C programming language
�Smith and Volpano 	

 ��

REFERENCES

Damas� L� ����� Type assignment in programming languages� Ph�D� thesis� Univ� of Edinburgh�

Damas� L� and Milner� R� ����� Principal type�schemes for functional programs� In Proceedings

of the �th ACM Symposium on Principles of Programming Languages� ACM� New York� ����
����

Gordon� M��Milner� R�� and Wadsworth� C� ����� Edinburgh LCF� LectureNotes in Computer
Science� vol� ��� Springer�Verlag� Berlin�

Greiner� J� ���
� Standard ML weak polymorphism can be sound� Tech� Rep� CMU�CS��
�����
School of Computer Science� Carnegie Mellon Univ�� Pittsburgh� Pa� May�

Harper� R� ����� A simpli�ed account of polymorphic references� Inf� Process� Lett� ��� ��������

Harper� R� ����� A note on �A simpli�ed account of polymorphic references�� Inf� Process�

Lett� ��� ������

Hoang� M�� Mitchell� J�� and Viswanathan� R� ���
� Standard ML�NJ weak polymorphism
and imperative constructs� In Proceedings of the �th IEEE Symposium on Logic in Computer

Science� IEEE� New York�

Leroy� X� ����� Polymorphic typing of an algorithmic language� Ph�D� thesis� INRIA�
Rocquencourt Res� Rep� ����� Le Chesnay� France�

Leroy� X� ���
� Polymorphism by name for references and continuations� In Proceedings of the

�	th ACM Symposium on Principles of Programming Languages� ACM� New York� �����
��

Leroy� X� and Weis� P� ����� Polymorphic type inference and assignment� In Proceedings of the

��th ACM Symposium on Principles of Programming Languages� ACM� New York� ����
���

Smith� G� and Volpano� D� ����� Towards an ML�style polymorphic type system for C� In
Proceedings of the
th European Symposium on Programming� Lecture Notes in Computer
Science� Springer�Verlag� Berlin� To appear�

Talpin� J��P� and Jouvelot� P� ����� The type and e�ect discipline� In Proceedings of the �th

IEEE Symposium on Logic in Computer Science� IEEE� New York� ������
�

Tofte� M� ����� Type inference for polymorphic references� Inf� Comput� ��� ��
��

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

Polymorphic Typing of Variables and References � ���

Volpano� D� and Smith� G� ����� A type soundness proof for variables in LCF ML� Inf� Process�
Lett� �
� ��������

Volpano� D� and Smith� G� ����� A note on typing variables and references� Tech� Rep� NPS�
CS������
� Computer Science Dept�� Naval Postgraduate School� Monterey� Calif�

Wright� A� ����� Typing references by e�ect inference� In Proceedings of the �th European

Symposium on Programming� Lecture Notes in Computer Science� vol� ���� Springer�Verlag�
Berlin� ��
�����

Wright� A� ���
� Polymorphism for imperative languages without imperative types� Tech� Rep�
TR �
����� Dept� of Computer Science� Rice Univ�� Houston� Tex�

Wright� A� ����� Simple imperative polymorphism� J� Lisp Symb� Comput� �� � �Dec���
�
�
���

Wright� A� and Felleisen� M� ����� A syntactic approach to type soundness� Inf� Comput� ���� �
�Nov���
�����

Received March ����
 revised September ����
 accepted January ����

ACM Transactions on Programming Languages and Systems� Vol� ��� No� �� May ����� Pages �	
�����

